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According to Fig. 11 a plot of the deviation A versus
InT for the samples A#-2.1Co and Pt-9.07Rh gives a
straight line between about 30 and 200°K. As has been
mentioned in Sec. IV, in our 4#-Co alloy the effective
Co concentration may be appreciably smaller than
2.1 at.9,. This may explain why we did not find negative
deviations A as has been reported by others for this
system.®! The linearity of both curves shown in Fig. 11
may suggest that between about 30 and 200°K the
Kondo term in the resistivity proportional to InT is the
dominant contribution to A. The tailing off in the curves
at lower temperatures may be associated with a small
contribution to A from another mechanism. An inter-
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pretation of the curves in Fig. 11 with Kondo’s InT
term would suggest that the s-d exchange integral J is
positive in both samples. From the slope of the curve
shown in Fig. 11, in combination with Egs. (35) and
(36) the value J=0.6 eV is then obtained for the sample
Au-2.1 Co.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge valuable suggestions
from R. E. Govednik regarding the experimental
procedures. The authors had helpful discussions with
C. van Baarle, J. E. Robinson, and O. C. Simpson.

NUMBER 8 15 APRIL 1970
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A general formula for the transition radiation emitted by a uniformly moving charged particle normally
incident on a multilayer, either self-supporting or deposited on a thick substrate, is calculated. This formula
enables one to take into account the exact multilayer configuration of targets, e.g., oxide layers in the

analysis of transition radiation data.

1. INTRODUCTION

RANSITION radiation, emitted by uniformly

moving charged particles crossing the interface of
two media having different dielectric properties, has
recently been the subject of many theoretical and
experimental studies.!? More recently the construction
of a new high-energy particle detector making use of
transition radiation is being developed.? In experi-
mental work, the targets often consist of multilayers,
either self-supporting or deposited on a thick substrate,
but a general formula which can account for the real
configuration of multilayers has not yet been calculated.
In this paper, we present the result of an exact treat-
ment of the transition radiation from an arbitrary
multilayer due to normally incident charged particles.
Since an excellent exposition of the underlying electro-
magnetic theory and the methods used below is avail-
able in Ref. 4, we restrict ourselves to the essential
points and the new results in the following concise
presentation of the derivation of a general formula for
transition radiation from a multilayer.
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2. GEOMETRY OF PROBLEM AND
BOUNDARY CONDITIONS

Consider an #» layer bounded by the n+41 plane
interfaces parallel to the xy plane located at z=D,
(p=1, ..., n+1). The thickness d, of the pth layer
between z=D, and z2=D,; is dp=Dp;1—D,p, and its
dielectric constant is e, The semi-infinite spaces
2<D;=0 and 2> D, are characterized by dielectric
constants e and e,;1, respectively.

When a uniformly moving charged particle passes
through the # layer along the normal to the plane inter-
faces of the # layer, taken as the z axis, the only non-
vanishing component of the current density j(r,?)
=(0,07,) and the Hertz vector II(r,#)= (0,0,I1,) will be
the z component and we omit the subscript z below.
If the particle carries a charge Ze and moves at velocity
v, then the current density is given by

7(1,0)=Zevd ()8 (y)d (z—t) . 1

Here we have assumed that the particle crosses the
front interface z=D;=0 at time =0 and §(x) denotes
Dirac’s é function.

The Fourier transform of (1),

1 +o0 +o0 -0
dx dy dt
(277) 8/2 — —0 —0o0

X j(r,t)eiChatubmat - (2)

T (kaykeyyes I z)=
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can be found easily and one gets
Ze
(2m)3/2

where the abbreviation n=w/v was used.

The Fourier transform of the Hertz vector in the
pth layer is related to the current density by the
equation

J (kaykeyye ‘ z)=

ez , (3)

d? 47
(-d—2 +QP2)HP(kI7ky,w|z) = ,—](kzakwwlz) ) (4)
2

1wep

in which g,2=(ew?/c®)—x® with =k +k,% The
general solution of II, is given by
1 e
I, =A g4 A, eitvs-T— — ,

€ g"— 1’

with I'=(Ze/(27w)*?)4r/iw. If ¢, denotes the root
+[(egw?/c?)—2]/2 with Img,>0, then 4, and 4,/
represent the amplitudes of the free waves in the pth
layer propagating in the positive and negative direction
of the z axis, respectively. The Hertz vectors in the
semi-infinite spaces s<D;=0 and 2>D,;; have the
following forms:

®)

1 einz
Ho= Ao'e‘iq"z-l- I'— (6)
€ go®—n*
and
1 eir,z
Hn+1=An+1eiqn+lz+I‘— — ) (7)

€ntl Qn+12 —n?

because there exist only those waves which move away
from the # layer in these two semi-infinite regions.
The boundary conditions

epllp=¢€p1ll,1 and dll,/dz=dIl,/dz

at the first, the pth, and the (#-+1)th interfaces are
given by Egs. (8), (9), and (10), respectively:

T
ed o+ =aditead/+ , (8a)
qo*—7? q2—n?
ry i ! r
—qodo+— =qd1—qd +—- s (8b)
€9 (J02—772 €1 912—172,
I‘eiﬂDP
€p1 ( A p—1 eilIP—IDp+ A p—l, e-iflp—le) +
g —n"
TetnD»
= ep(4 peitrPr- 4 )/ e=i00Pr)+ , (9a)
g5 —n?
7 TeiP»

Qp—l(A p_leiqp—le_A p'l’e"iqp—lbp)_i_ -
€p—1qp—1"—1n"
I‘giﬂDP
=qp(A e’ wPr— A, eiwPr) 4 — — )
€ 4" — 1’

(9b)
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I‘einDn-i-l
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q"Z —_— 7]2
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=¢,114 ap1€t0 Dl — , (10a)
gnir®—1’
TeinPnt1
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I‘einDn+1
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Solving the above equations for 4y’ and 4 11, we obtain

Bg—PB'e
Ao' = (lla)
€d+€qgo
and
BQ()-l—BIGo
A n+1eiq"+1D”+l - . (1 lb)
€od+€qo

Here the following abbreviations are used:

B Bt B,
< ) =LiLy- - LM n+l( )+L1Lz <o LpaM n( )
B Byt B,

B, By
+"'+L1M2( )+M1< ),
By BY
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61/011 €101
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@/ —qe
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3. POYNTING FLUX AT LARGE DISTANCES

and

Having obtained the Fourier transform of the Hertz
vector we can perform the inverse integration
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1 +-o00 -0 —+-0
II = "
(r,0) o /— ] dk [ ] dk, /_ ) dw
47

Ze

___A (),(Or An l)ei(Zkz'F?/kI/‘i‘ZQD—wU (12)
(2m)3/2 4o " ’

and in the far radiation zone the application of the

saddle-point method yields

Ze cosf giltkr—ot)

I(r)=— —

400
/ dw Ao (or A py1) (13)

mc r

We have taken out the factor
Ze 4r

C(2m)2 e

of Ay or Anp1 in (12) and set € or e,;1=1, so that
k=|k|=w/c. In (13), r=(r sinf cosgp, 7sinf sing,
7 cosf), and one puts k= (w/c) sinf into the expressions
A(), and An+1.

Since E= (w?/c*)II, one gets in polar coordinates

Zecosf [+ w\ 2
Ey=H,=—— / dw(—)
mc o c

X Ay sinf(or — A4 11 8inf)

ei(kr—wt)

¥
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and
E,=—Hy=0.

Therefore, the emitted radiation is polarized in the plane
of emission and its Poynting flux is given by

c [t
S=— | EH,dtrdQ
dr J_o
(Ze cosh)? = w\*
= : / (—) | Ao (or A,y1)|?sin20dS.
m°e 0 C

Finally, we obtain for the number of photons emitted
per unit frequency interval at frequency w and per unit
solid angle in the direction  with respect to the normal
of the multilayer:

diN e 7?2 cos?0 sin20/w 4
-2 —) 140 |20 | dunl). (1)
dodQ e \¢

mw

One should note that (w/c)*| 4, |? is dimensionless and
by multiplying the Eqgs (11) by (w/c)? one can make all
quantities involved in these fundamental formulas
dimensionless and thus simplify the programming of
these formulas. Furthermore, one can set e, 1 (or €p)
equal to 1 and get the forward (or backward) yield but
the other € (or €,,.1) can be left arbitrary so that the
above formula can be applied to a multilayer deposited
on a thick substrate.



